Rating

    No results.
12

Improving User Interfaces for Robot Teleoperation

The FXPAL robotics research group has recently explored technologies for improving the usability of mobile telepresence robots. We evaluated a prototype head-tracked stereoscopic (HTS) teleoperation interface for a remote collaboration task. The results of this study indicate that using a HTS systems reduces task errors and improves the perceived collaboration success and viewing experience. We […] → Read More: Improving User Interfaces for Robot Teleoperation

Improving User Interfaces for Robot Teleoperation

The FXPAL robotics research group has recently explored technologies for improving the usability of mobile telepresence robots. We evaluated a prototype head-tracked stereoscopic (HTS) teleoperation interface for a remote collaboration task. The results of this study indicate that using a HTS systems reduces task errors and improves the perceived collaboration success and viewing experience. We […] → Read More: Improving User Interfaces for Robot Teleoperation

Improving User Interfaces for Robot Teleoperation

The FXPAL robotics research group has recently explored technologies for improving the usability of mobile telepresence robots. We evaluated a prototype head-tracked stereoscopic (HTS) teleoperation interface for a remote collaboration task. The results of this study indicate that using a HTS systems reduces task errors and improves the perceived collaboration success and viewing experience. We […] → Read More: Improving User Interfaces for Robot Teleoperation

Improving User Interfaces for Robot Teleoperation

The FXPAL robotics research group has recently explored technologies for improving the usability of mobile telepresence robots. We evaluated a prototype head-tracked stereoscopic (HTS) teleoperation interface for a remote collaboration task. The results of this study indicate that using a HTS systems reduces task errors and improves the perceived collaboration success and viewing experience. We […] → Read More: Improving User Interfaces for Robot Teleoperation

Improving User Interfaces for Robot Teleoperation

The FXPAL robotics research group has recently explored technologies for improving the usability of mobile telepresence robots. We evaluated a prototype head-tracked stereoscopic (HTS) teleoperation interface for a remote collaboration task. The results of this study indicate that using a HTS systems reduces task errors and improves the perceived collaboration success and viewing experience. We […] → Read More: Improving User Interfaces for Robot Teleoperation

Using Stereo Vision to Operate Mobile Telepresence Robots

The use of mobile telepresence robots (MTRs) is increasing. Very few MTRs have autonomous navigation systems. Thus teleoperation is usually still a manual task, and often has user experience problems. We believe that this may be due to (1) the fixed viewpoint and limited field of view of a 2D camera system and (2) the […] → Read More: Using Stereo Vision to Operate Mobile Telepresence Robots

Using Stereo Vision to Operate Mobile Telepresence Robots

The use of mobile telepresence robots (MTRs) is increasing. Very few MTRs have autonomous navigation systems. Thus teleoperation is usually still a manual task, and often has user experience problems. We believe that this may be due to (1) the fixed viewpoint and limited field of view of a 2D camera system and (2) the […] → Read More: Using Stereo Vision to Operate Mobile Telepresence Robots

Using Stereo Vision to Operate Mobile Telepresence Robots

The use of mobile telepresence robots (MTRs) is increasing. Very few MTRs have autonomous navigation systems. Thus teleoperation is usually still a manual task, and often has user experience problems. We believe that this may be due to (1) the fixed viewpoint and limited field of view of a 2D camera system and (2) the […] → Read More: Using Stereo Vision to Operate Mobile Telepresence Robots

Using Stereo Vision to Operate Mobile Telepresence Robots

The use of mobile telepresence robots (MTRs) is increasing. Very few MTRs have autonomous navigation systems. Thus teleoperation is usually still a manual task, and often has user experience problems. We believe that this may be due to (1) the fixed viewpoint and limited field of view of a 2D camera system and (2) the […] → Read More: Using Stereo Vision to Operate Mobile Telepresence Robots

Ego-Centric vs. Exo-Centric Tracking and Interaction in Smart Spaces

In the recent paper published at SUI 2014,”Exploring Gestural Interaction in Smart Spaces using Head-Mounted Devices with Ego-Centric Sensing”, co-authored with Barry Kollee and Tony Dunnigan, we studied a prototype Head Mounted Device (HMD) that allows the interaction with external displays by input through spatial gestures. In the paper, one of our goals was to […] → Read More: Ego-Centric vs. Exo-Centric Tracking and Interaction in Smart Spaces

12